QSK60-G13

> Specification sheet

Our energy working for you.™

Description

The QSK60 is a V 16 cylinder engine with a 60 litre displacement. This Quantum series utilizes sophisticated electronics and premium engineering to provide outstanding performance levels, reliability and versatility for Standby, Prime and Continuous Power applications.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

High pressure fuel pump, Modular Common Rail fuel System (MCRS) and state of the art integrated electronic control system provide superior performance, efficiency and diagnostics. The electronic fuel pumps deliver up to 1600 bar injection pressure and eliminate mechanical linkage adjustments. The new MCRS utilizes an electric priming pump which is integrated with the off-engine stage-1 fuel filter head and is controlled and powered by the engine ECM. The stage-2 fuel filters are mounted on-engine

CTT (Cummins Turbo Technologies) HX82/HX83 turbocharging utilizes exhaust energy with greater efficiency for improved emissions and fuel consumption.

Low Temperature After-cooling - Two-pump Two-loop (2P2L)

Ferrous Cast Ductile Iron (FCD) Pistons - High strength design delivers superior durability.

G-Drive Integrated Design - Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gross Engine Output Net Eng					put	Typical Generator Set Output						
Standby	Prime	Base	Standby	Prime	Base	Standby	(ESP)	Prime	(PRP)	Base (COP)		
kWm/BHP kW			kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA		
2164/2901	1727/2315	N/A	2108/2826 1692/2269		N/A	2000	2000 2500		1600 2000		N/A	

General Engine Data

Туре	4 cycle, Turbocharged, After-cooled
Bore mm	159
Stroke mm	190
Displacement Litre	60.2
Cylinder Block	Cast iron, 16 cylinder
Battery Charging Alternator	55A
Starting Voltage	24V
Fuel System	Direct injection Cummins MCRS
Fuel Filter	Spin on fuel filters with water separator
Lube Oil Filter Type(s)	Spin on full flow filter
Lube Oil Capacity (I)	280
Flywheel Dimensions	SAE 0

Coolpac Performance Data

Cooling System Design	2 pump – 2 loop
Coolant Ratio	50% ethylene glycol; 50% water
Coolant Capacity (I)	
Limiting Ambient Temp.**	Engine only – not applicable
Fan Power	Engine only – not applicable
Cooling System Air Flow (m ³ /s)**	
Air Cleaner Type	Dry replaceable element with restriction indicator
** @ 13 mm H ² 0	

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
2781	1794	2155	7185

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	US gal/ph									
Standby Po	Standby Power											
100	2164	2901	523	138.1								
Prime Power												
100	1727	2315	399	105.4								
75	1295	1736	302	79.7								
50	863	1158	210	55.5								
25	432	579	119	31.4								
Continuous	s Power											
100	N/A	N/A	N/A	N/A								

Cummins G-Drive Engines

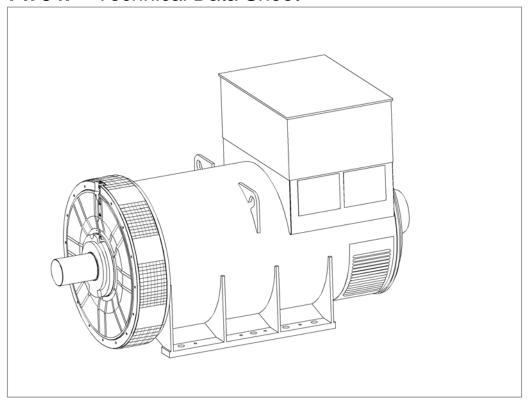
10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Asia Pacific

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902 **Latin America**Rua Jati, 310, Cumbica
Guarulhos, SP 07180-900
Brazil
Phone 55 11 2186 4552
Fax 55 11 2186 4729

Mexico
Cummins S. de R.L. de C.V.
Eje 122 No. 200 Zona Industrial
San Luis Potosí, S.L.P. 78090
Mexico
Phone 52 444 870 6700
Fax 52 444 870 6811

North America 1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298



STAMFORD

PI734F - Technical Data Sheet

PI734F SPECIFICATIONS & OPTIONS

STAMFORD

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC60034, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generator (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The PI range generators, complete with a PMG, are available with one of two AVRs. Each AVR has soft start voltage build up and built in protection against sustained over-excitation, which will de-excite the generator after a minimum of 8 seconds.

Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a presettable level.

The MX341 AVR is two phase sensed with a voltage regulation of \pm 1 %. (see the note on regulation).

The MX321 AVR is 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circuit will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

Both the MX341 and the MX321 need a generator mounted current transformer to provide quadrature droop characteristics for load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half kev.

INSULATION/IMPREGNATION

The insulation system is class 'H', and meets the requirements of UL1446.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

NOTE ON REGULATION

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

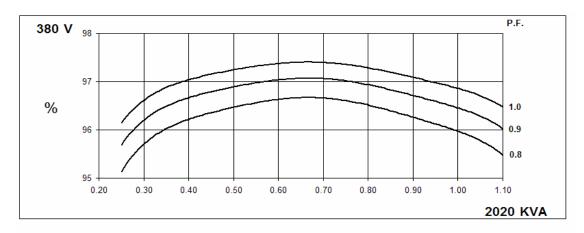
Note: Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

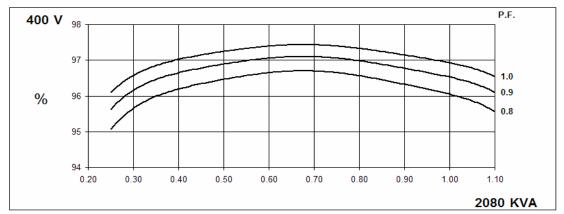
Front cover drawing is typical of the product range.

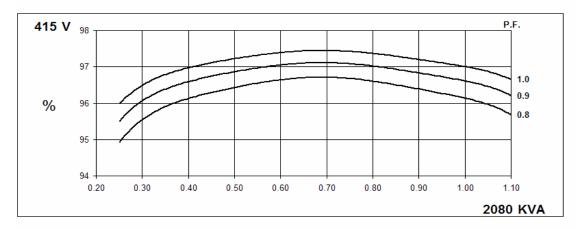
PI734F WINDING 312

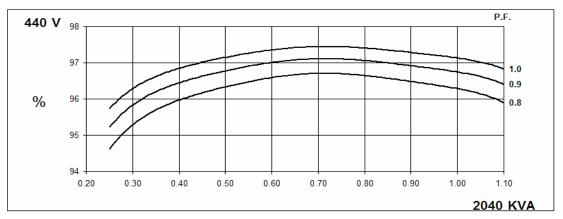
STAMFORD

CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.							
A.V.R.	MX341	MX321								
VOLTAGE REGULATION	± 1%	± 0.5 %	With 4% ENGINE GOVERNING							
SUSTAINED SHORT CIRCUIT	REFER TO	EFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)								

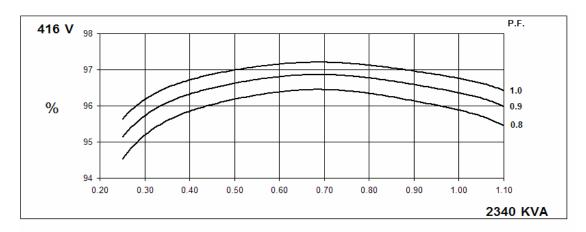

INSULATION SYSTEM				CLAS	SS H						
PROTECTION				IP2	23						
RATED POWER FACTOR				0.	8						
STATOR WINDING				DOUBLE L	AYER LAP						
WINDING PITCH				TWO T	HIRDS						
WINDING LEADS				6	i						
MAIN STATOR RESISTANCE		0.00076 Ohms PER PHASE AT 22°C STAR CONNECTED									
MAIN ROTOR RESISTANCE		2.31 Ohms at 22°C									
EXCITER STATOR RESISTANCE		17.5 Ohms at 22°C									
EXCITER ROTOR RESISTANCE			0.06	3 Ohms PER	PHASE AT 2	2°C		-			
R.F.I. SUPPRESSION	BS EI	N 61000-6-2	& BS EN 610	00-6-4,VDE 0	875G, VDE 0	875N. refer to	o factory for o	thers			
WAVEFORM DISTORTION		NO LOAD «	< 1.5% NON-	DISTORTING	BALANCE	LINEAR LO	AD < 5.0%				
MAXIMUM OVERSPEED				2250 R	ev/Min						
BEARING DRIVE END				BALL. 6	232 C3						
BEARING NON-DRIVE END				BALL. 6	319 C3						
		1 BE/	ARING			2 BEA	RING				
WEIGHT COMP. GENERATOR		384	0 kg		3807 kg						
WEIGHT WOUND STATOR			8 kg		1908 kg						
WEIGHT WOUND ROTOR			9 kg			156	5 ka				
WR² INERTIA			9 kgm²		48.424 kgm ²						
SHIPPING WEIGHTS in a crate			3kg		3876kg						
PACKING CRATE SIZE		216 x 105			216 x 105 x 154(cm)						
7.6			Hz		60 Hz						
TELEPHONE INTERFERENCE			<2%				TIF<50				
COOLING AIR			c 5700 cfm		3.45 m³/sec 7300 cfm						
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277			
kVA BASE RATING FOR REACTANCE											
VALUES	2020	2080	2080	2040	2340	2500	2550	2600			
Xd DIR. AXIS SYNCHRONOUS	2.93	2.73	2.53	2.21	3.54	3.38	3.16	2.96			
X'd DIR. AXIS TRANSIENT	0.18	0.17	0.15	0.13	0.21	0.20	0.19	0.18			
X"d DIR. AXIS SUBTRANSIENT	0.13	0.12	0.11	0.10	0.16	0.15	0.14	0.13			
Xq QUAD. AXIS REACTANCE	1.89	1.75	1.63	1.42	2.28	2.18	2.03	1.90			
X"q QUAD. AXIS SUBTRANSIENT	0.26	0.25	0.23	0.20	0.32	0.31	0.29	0.27			
XL LEAKAGE REACTANCE	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.03			
X2 NEGATIVE SEQUENCE	0.19	0.17	0.16	0.14	0.23	0.22	0.20	0.19			
X ₀ ZERO SEQUENCE	0.02	0.02	0.02	0.02	0.03	0.03	0.02	0.02			
REACTANCES ARE SATURAT	ED	١	ALUES ARE	PER UNIT A	T RATING AI	ND VOLTAGE	INDICATED)			
T'd TRANSIENT TIME CONST.				0.15							
T''d SUB-TRANSTIME CONST.				0.0							
T'do O.C. FIELD TIME CONST.				2.5							
Ta ARMATURE TIME CONST.				0.0							
SHORT CIRCUIT RATIO	1/Xd										

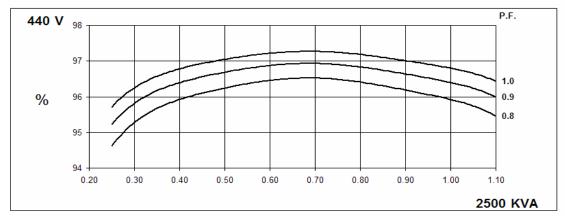

50 Hz

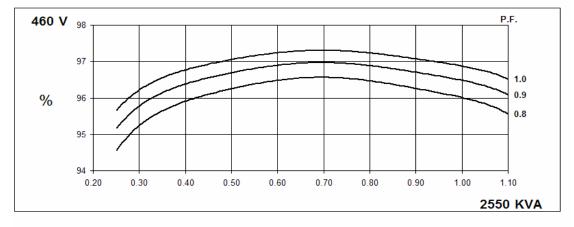

PI734F Winding 312

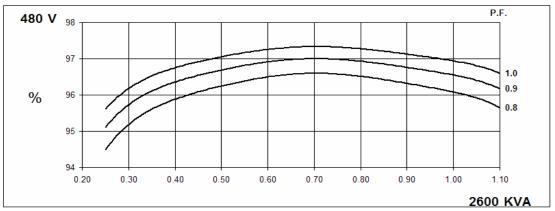


THREE PHASE EFFICIENCY CURVES

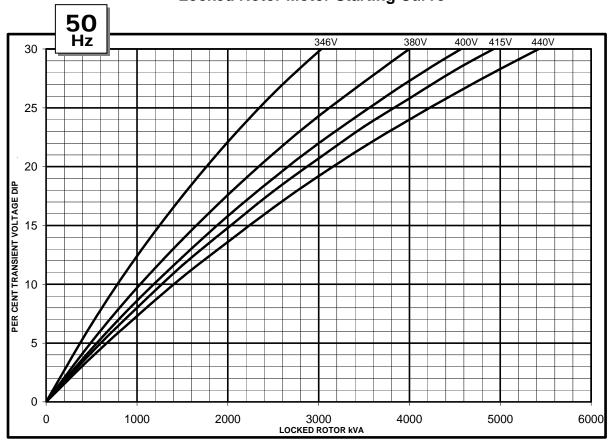


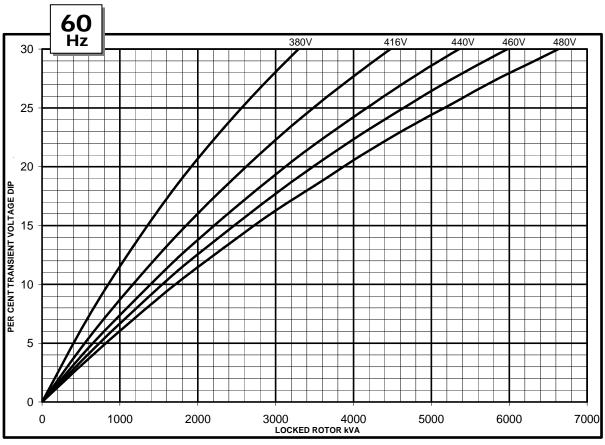

60 Hz


PI734F Winding 312



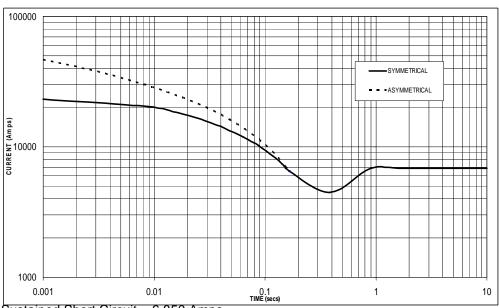
THREE PHASE EFFICIENCY CURVES

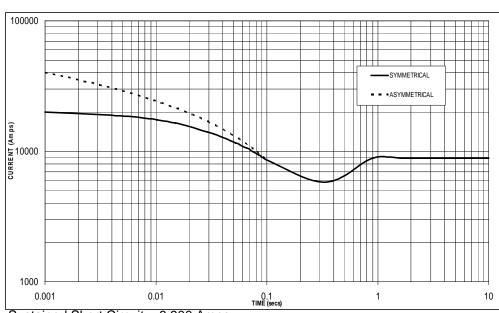




PI734F Winding 312

Locked Rotor Motor Starting Curve




Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 6,850 Amps

60 Hz

Sustained Short Circuit = 8,900 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage:

50	Hz	60Hz							
Voltage	Factor	Voltage	Factor						
380v	x 1.00	416v	x 1.00						
400v	x 1.05	440v	x 1.06						
415v	x 1.09	460v	x 1.10						
440v	x 1.16	480v	x 1.15						
The quetains	d gurrent val	uo io constan	t irroopootivo						

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit:

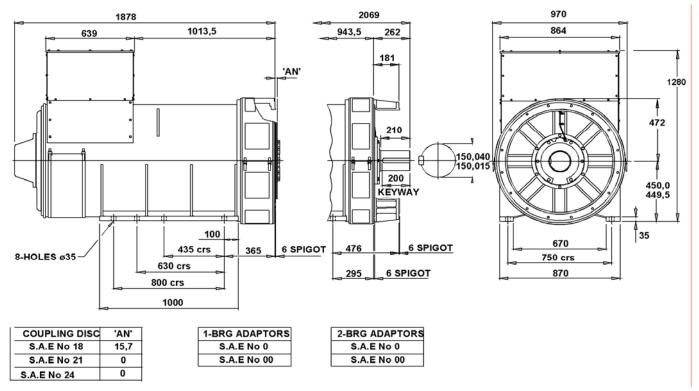
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines.

PI734FWinding 312 / 0.8 Power Factor



RATINGS

Class - Temp Rise	Co	ont. F -	105/40°	C.	Cont. H - 125/40°C			Standby - 150/40°C				Standby - 163/27°C				
50 Hz Star (V)		400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
kVA		1935	1935	1900	2020	2080	2080	2040	2105	2170	2170		2165	2230	2230	2185
kW	1504	1548	1548	1520	1616	1664	1664	1632	1684	1736	1736	1700	1732	1784	1784	1748
Efficiency (%)	96.1	96.2	96.3	96.4	96.0	96.0	96.1	96.3	95.9	95.9	96.0	96.2	95.8	95.9	96.0	96.2
kW Input	1565	1609	1607	1577	1683	1733	1732	1695	1756	1810	1808	1767	1808	1860	1858	1817

60 H	∃Z Star (V)		440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
		2180		2370	2420	2340	2500	2550	2600	2435	2600	2650	2705	2505	2675	2730	2785
	kW	1744	1860	1896	1936	1872	2000	2040	2080	1948	2080	2120	2164	2004	2140	2184	2228
	Efficiency (%)	96.0	96.1	96.1	96.2	95.9	95.9	96.0	96.1	95.8	95.8	95.9	96.0	95.7	95.8	95.9	95.9
	kW Input	1817	1935	1973	2012	1952	2086	2125	2164	2033	2171	2211	2254	2094	2234	2277	2323

DIMENSIONS

STAMFORD

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

© 2006 TD_PI734F.GB_10.06_04_GB